7,633 research outputs found

    Tensegrity, Experimentation in the Removal of Compression Stability Elements

    Get PDF
    Tensegrity strives to create an impossible floating structure. To achieve this mark, cables are used to suspend the pavilion mid-air which creates an axial stress governed system. Within this axial force design constraint, a 3D space truss becomes the form. This structure pays homage to famous structural designers of the past such as Santiago Calatrava and Kenneth Snelson. Similar to these artists, tensile elements are at the forefront of the design. To accomodate the user, we have provided a sitting space nestled in the center of system. This is intended for visitors first to be puzzled by the seemingly discontinuous load path, then for them to learn and understand this large-scale tensegrity experiment

    Radio-Optically- and Thermally Stimulated Luminescence of Zn(BO2)2:Tb3+ exposed to Ionizing Radiation

    Get PDF
    The optical absorption of zinc tetraborate at different concentrations of the terbium impurity (0, 0.5, 1, 2, 4, 8 mol%) was analyzed. The radioluminescence (RL) emission spectra was obtained after beta irradiation of a 90Sr/90Y source. The RL spectrum showed the characteristics bands of Tb3+ with two main emissions at 489 nm and 546 nm which corresponding to the5D4→7F6 and 5D4→7F5 transitions respectively in this ion. The OSL and TL characteristics have been analyzed. The stimulation blue light (497 nm) of a diode laser at 500 mA was used to bleach the thermoluminescent (TL) signals obtained with 5Gy of 60Co source. The two main glow peaks (79 and 161 °C) are sensitives under 497 nm stimulation, and they were shifted to higher temperature values and faded their TL intensities. Similar behavior of TL glow curves before and after OSL stimulation with blue light was observed when the samples were exposed to 30 Gy gamma dose of 137Cs irradiator. The OSL signal response was linear with the dose range of 1-10 Gy and increased their response up to 200 Gy gamma dose. The OSL shows a bleaching sensitive shallow traps and diminishing the intensity of the TL glow curves remaining a complex traps distribution. The RL, TL and OSL properties were investigated in Zn(BO2)2:Tb3+ phosphor

    Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.

    Get PDF
    Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common and clinically distinct form of familial spastic paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval and identified ten mutations in a previously unidentified gene expressed ubiquitously in the nervous system but most prominently in the cerebellum, cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense or insertions and deletions leading to a frameshift, suggesting a loss-of-function mechanism. The identification of the function of the gene will provide insight into the mechanisms leading to the degeneration of the corticospinal tract and other brain structures in this frequent form of ARHSP

    Production of neutral and charged Higgs bosons of the MSSM at the future e-gamma colliders

    Full text link
    A complete study for the production of neutral (h^0, H^0, A^0 (= \phi^0_i)) and charged Higgs (H^\pm) bosons at electron-photon colliders is presented in the context of the minimal supersymmetric standard model. A particular choice of the non-linear R_\xi gauge is used to evaluate the amplitudes of the reaction e-gamma --> e \phi^0_i. The resulting cross section indicates that it will be possible to detect a signal from the neutral Higgs bosons for most regions of parameter space at the future linear colliders with \sqrt{s}=500 GeV through the reaction e gamma --> e \phi^0_i. This reaction also offers the interesting possibility to measure the Higgs mass through the detection of the outgoing electron. The production of the charged Higgs boson through the reaction e gamma --> \nu_e H^\pm$ has in general smaller values for the cross section, which seems more difficult to observe.Comment: submitted to Phys. Rev.

    Preliminary definitions for the sonographic features of synovitis in children

    Get PDF
    Objectives Musculoskeletal ultrasonography (US) has the potential to be an important tool in the assessment of disease activity in childhood arthritides. To assess pathology, clear definitions for synovitis need to be developed first. The aim of this study was to develop and validate these definitions through an international consensus process. Methods The decision on which US techniques to use, the components to be included in the definitions as well as the final wording were developed by 31 ultrasound experts in a consensus process. A Likert scale of 1-5 with 1 indicating complete disagreement and 5 complete agreement was used. A minimum of 80% of the experts scoring 4 or 5 was required for final approval. The definitions were then validated on 120 standardized US images of the wrist, MCP and tibiotalar joints displaying various degrees of synovitis at various ages. Results B-Mode and Doppler should be used for assessing synovitis in children. A US definition of the various components (i.e. synovial hypertrophy, effusion and Doppler signal within the synovium) was developed. The definition was validated on still images with a median of 89% (range 80-100) of participants scoring it as 4 or 5 on a Likert scale. Conclusions US definitions of synovitis and its elementary components covering the entire pediatric age range were successfully developed through a Delphi process and validated in a web-based still images exercise. These results provide the basis for the standardized US assessment of synovitis in clinical practice and research

    Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution.

    Get PDF
    Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD
    • …
    corecore